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The use of software is pervasive in all fields of science. Associated software development efforts may be very

large, long lived, and complex, requiring the commitment of significant resources. However, several authors

have argued that the “gap” or “chasm” between software engineering and scientific programming is a serious

risk to the production of reliable scientific results, as demonstrated in a number of case studies. This article

reviews the research that addresses the gap, exploring how both software engineering and research practice

may need to evolve to accommodate the use of software in science.
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1 INTRODUCTION

Software is now an indispensable tool for the conduct of scientific research. Software applications
may be used to gather, synthesise, manage, process, analyse, and/or present enormous quantities
of data. Several example cases illustrate the diverse use of software in scientific research:

• The Large Hadron Collider facility at CERN is supported by a software development effort
consisting of more than five million lines of code, comparable to a small operating system
[46, 129]. The collection and analysis of the terabytes of data generated by experiments run
on the LHC would be impractical without this infrastructure.

• The 2013 Nobel prize for Chemistry prize was awarded jointly to Karplus, Levitt and
Warshel for “for the development of multi-scale models for complex chemical systems”
[152]. These models are computer simulations of chemical processes that are either too
complex or too costly (or both) to replicate in the physical world for all experiments.

• Software is essential for making long-term predictions about changes to the climate as a
result of both natural and anthropogenic factors [49, 171]. As Edwards [50] notes, software
is used to integrate a wide variety of sources of historical temperature data to produce
a single homogeneous global gridded temperature record. In addition, predictions about
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climate change depend on coupled general circulation models to process this data and make
predictions about future temperature variations.

Reviewing these examples, it can be seen that the use of software brings a variety of benefits to
scientific research. Large quantities of data gathered from observations can be processed accurately
and quickly. Derived data sets can be generated from a range of sources and synthesised in a
consistent manner. Very large data sets can be curated using software tools, allowing rapid and
consistent dissemination. Analyses employing novel visualisations or statistical techniques can be
used to identify new trends and opportunities for future research. Finally, software permits the
simulation of physical phenomena for analysis, where collection of primary data is unfeasible.

Despite the acknowledged benefits, growing dependence on software raises questions as to its
appropriate role as a tool within the scientific method. Empirical science is characterised by Pop-
per [135] as the proposition of hypotheses concerning some aspect of the world. An experiment is
then developed to test this hypothesis. If the results of the experiment contradict the hypothesis,
then the hypothesis is rejected and alternative explanations are sought. Hypotheses that are con-
firmed by repeated experimentation gradually gain acceptance within the scientific community.
These hypotheses may eventually be referred to as theories. Empirical science therefore progresses
through the falsification of invalid hypotheses, rather than the confirmation of valid ones. Popper
[135] identified several characteristics of a scientific method that would support this process:

• Scientific theories should be falsifiable through experimental contradiction by example. It
must be possible to use the hypothesis to make predictions about the result of an experiment
that, when contradicted, demonstrate that the hypothesis was incorrect.

• Experiments should be repeatable. In practice, repeatability is achieved by thorough docu-
mentation of the procedure followed and the tools employed in the experiment, enabling
an experimenter to demonstrate the scientific result on demand.

• The results of an experiment should be reproducible by an independent experimenter. The
individual should be able to follow the experimental procedures employed, using equivalent
tools to recreate the same results. If independent experimenters fail to reproduce the results
then this should cast doubt on the validity of the original hypothesis.

• The limitations as to the validity of the results of an experiment and any consequent con-
clusions due to the method employed are made explicit in an experimental report.

The use of software in scientific processes poses challenges to all these requirements. Brooks
[20] argued that software is “essentially” complex, intangible, and volatile in nature, leading to
many of the failures that beset software projects in all domains [62]. In scientific research, this
complexity has manifested itself as difficulties in repetition of experimental methods [161], obsta-
cles to reproducing results [112], and the identification of software defects that invalidate results
[67, 68, 116].

Software engineering emerged as a discipline in the 1970s, as a deliberate response to the per-
ceived software “crisis” of the time [120]. The crisis referred to the increasing number of software
projects that were perceived as failures, due to over-spent budgets, delayed schedules, incorrect
functionality, unacceptable defects, or outright project cancellation [62]. These problems were at-
tributed to the ever-increasing scale, complexity, and consequent volatility of software systems as
the capabilities of computers and the number of programmers required to collaborate on a project
increased [107].

A variety of software development processes, practices, and tools have been developed since the
1960s to provide for greater control, predictability, and quality in software development efforts.
The recognition that software development is intrinsically complex, evolutionary, and concurrent
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is embodied in the proliferation of agile development disciplines, such as Scrum [154] and Extreme
[12]. Recent surveys of software projects have suggested that these developments may finally be
providing a remedy [51].

Despite this progress in other domains, the adoption of available software engineering prac-
tices and tools in scientific programming, the practice of developing software to support scientific
work, remains patchy [179]. Kelly [95] referred to the disconnection between much of software en-
gineering practice and scientific programming as a “chasm.” More recently, Faulk et al. [54] raised
concerns about productivity in scientific programming that could have been made in the early
days of the software crisis. There is a need to improve the transfer of existing practices and tools
from other applications of software engineering to scientific programming. In addition, due to the
specialised nature of scientific programming, there is a need for research to specifically develop
methods and tools that are tailored to the domain.

This article contributes to this research by reviewing the literature that covers the interaction
between software engineering and scientific programming. The article summarises the problems
encountered when employing software in scientific research; reviews the current state of the art
in scientific programming practice as reported in case studies; and ongoing research efforts to bet-
ter understand and support the needs of researchers working on scientific programming projects.
Several sources from the literature were reviewed as starting points for this survey. Specifically,
there has been a recent series of workshops examining the relationship between software engi-
neering and science [24–27, 155]. Carver [23] has provided a summary report of the 2009 work-
shop. In addition, Wilson and Lumsdaine [189] guest edited an edition of Computing in Science

and Engineering on the role of software engineering in scientific programming. Similarly, Segal
and Morris [160] guest edited an edition of IEEE Software, presented the challenges faced by the
scientific programming community to software engineers and computing scientists; and Hey et al.
[74] edited a collection of articles investigating the growing phenomenon and challenges of data
intensive science. Related sources cited by works at these venues that also addressed the chal-
lenge of applying software engineering to scientific programming were then also retrieved and re-
viewed. These articles were supplemented with a search of Google Scholar using combinations of
the term “scientific programming,” “scientific computing,” “computational science,” and “software
engineering.”

The article is structured as follows. Section 2 reviews research over more than three decades that
has reported on the problems encountered in scientific programming. The section highlights the
conflict between the intrinsically evolutionary and complex nature of software and the demand
for stable, documented scientific experiments. Section 3 reviews case studies of scientific program-
ming in practice, identifying where existing practices have been adopted and adapted from soft-
ware engineering and where ongoing research challenges persist. Sections 4 and 5 reviews the
specific challenges in the quality assurance and long-term maintenance of scientific software, as
well as advances in addressing these challenges. Section 6 briefly surveys work on data quality as
it relates to scientific programming. Finally, Section 7 reviews the material presented and discusses
opportunities to revisit both software engineering and scientific practices in light of the growing
dependence of science on software.

2 SOFTWARE, REPRODUCIBILITY, AND SCIENTIFIC COMPLEXITY

There are numerous examples of the use of software thwarting attempts at repetition or reproduc-
tion of scientific results in a wide variety of disciplines and a sample of more illustrative recent
cases are outlined below. The 2010 controversy over software, data, and emails leaked from the
Climatic Research Unit at the University of East Anglia in the United Kingdom illustrated many of
the challenges [81, 82] in the context of climate science. Software used to derive published results
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was not routinely released for inspection and verification. When the code was released, several
defects were discovered and reported [82]. That code contains defects is perhaps not surprising;
however, as Shackley et al. [161] has observed, the sheer complexity of the software used in climate
science makes the interaction between software defects and scientific results difficult to interpret.

Similarly, Herndon et al. [71] reported a number of programming defects in a widely cited anal-
ysis [144] of public debt to GDP ratios across 20 advanced economies following World War II.
Herndon et al. identified errors in the implementation of a spreadsheet that formed the basis for
Reinhart and Rogoff’s analysis. The error caused the average growth of high debt/GDP ratios to
be understated and similarly caused low debt/GDP growth ratios to be overstated. Combined with
other problems with the analysis, Herndon et al. [71] refuted Reinhart and Rogoff [144]’s conclu-
sions.

Sanders and Kelly [153] reported that one of her interviewees had found that their application
produced significantly different results depending on the hardware platform it was executed on.
Similarly, Dubey et al. [47] noted (as an aside) that some compiler optimisation options prevented
the production of reliable results during the development of the second release of the FLASH code.

Most starkly, Miller [116] reported that several highly influential articles had to be retracted and
more than five years of research work lost as a result of a trivial programming error in a previous
researcher’s work [116]. The case illustrates the risk of relying on research dependent on complex
bespoke software, as the mistake appears to have originated in another lab. Miller also notes the
serious implications of such mistakes. One of the retracted articles was reported to be highly cited
and the basis for extensive further work. Scientists who had prepared articles contradicting the
original research reportedly experienced difficulty getting their own results published.

Several researchers have attempted to systematically assess the feasibility of repetition of
software-based experiments [36, 112, 172]. Stodden et al. [172] conducted an empirical study
of data and code publication policies adopted by journals. The work found that only a minor-
ity of journals maintained a data or code publication policy for peer reviewed research, although
(as noted in the study) the work does not account for possible confounding factors, such as the
prevalence of computational research in a particular field.

McCullough et al. [112] described an analysis of a code repository maintained by a peer reviewed
journal of applied economics. The analysis showed that 73% of the articles reviewed did not comply
with the journal’s policy requiring code and data submission. Further, many of those submissions
that were available contained code that could not be compiled or executed, or was incompatible
with the supplied data format. Anderson et al. [5] also reviewed the availability of program source
codes and data sets to support reproducible results in economics research. The research concluded
that progress towards reproducibility was likely to be minimal without the stricter imposition of
mandatory archiving.

Colberg et al. [36] reported a more recent effort to measure the repeatability of results in com-
puting science. The researchers examined research published in recent computing science confer-
ences and attempted to recover, compile and run associated source code. The researchers found
that only around a quarter of the research work could be conveniently reproduced in this man-
ner. The researchers also reported a range of obstacles to obtaining source code associated with
published research; and found that public funding of the research had no effect on availability.

Several researchers have linked difficulties in achieving repeatability with the management of
floating point arithmetic on finite computing hardware. For example, the problems encountered
by Hatton [67 ,68] were primarily caused by accumulated losses of precision in floating point
calculations due to programming errors that introduced systemic defects. The work reported on
defects in software used to determine the placement of oil wells based on computational models.
The defects were so significant the authors concluded that the placement method was essentially
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randomised. Separately, Edwards [50, p. 177] reported that the process of porting global circulation
model software to different hardware and software platforms often produced different results due
to the accumulation of different round-off operations. Roy and Oberkampf [151] note that when
such defects are the result of programming errors rather than necessary approximations due to
floating point operations, the use of techniques such as uncertainty quantification can be extremely
difficult to apply.

Shaon et al. [162] reported on two case studies of scientific software preservation and mainte-
nance activities. Both studies highlighted the view that long-term software preservation is prohib-
itively expensive. Surveys of software projects in other domains (Krogstie et al. [102], for example)
substantiate this view, suggesting that maintenance accounts for well over half of the lifetime cost
of software. These costs arise from curation activities, such as maintaining support for legacy
platforms, rather than from the relatively trivial costs of storage. In addition, the peer reviewed
publication process actively discourages the active maintenance of software, since the discovery
of defects can lead to the costly retraction of results.

Sanders and Kelly [153] also investigated the use of software in scientific domains where the
source codes were not always available (such as commercial products). Sanders and Kelly noted
that the use of black box software is a significant risk for scientists as they have no effective means
of determining if the implementation is correct with respect to a documented theoretical model.

In summary, several challenges can be identified in the literature:

• Experimental software is unavailable or cannot be redeveloped, because sufficient infor-
mation about specification and design at the time when the experiment was conducted is
unavailable.

• The software is available, but the original result cannot be reproduced so that the generated
scientific result can be validated. This may be a result of the subsequent identification and
removal of defects from the software code between the time of the experiment and the time
of publication or due to the execution of the code on different hardware platforms.

• The software is available, but contains defects that, when corrected, may contradict the
published results. In this situation, a scientist would in principle be required to retract their
article from the peer review process and repeat their analysis.

Fundamentally, these challenges concern the conflict between the documentation and presenta-
tion of a stable scientific method and the intangible and volatile nature of software. Software can be
represented in a variety of forms, each providing a partial view of the software’s structure and/or
behaviour. It is unclear how much of this documentation, or what forms should be included as part
of a description of an experimental method, given the traditional constraints on article length. In
addition, any given software artefact is constantly being altered as new features are added, existing
features are enhanced, architecture is improved and defects identified and removed. Any depen-
dencies, including hardware and software platform, libraries and compilers, will also continue to
evolve under the same pressures.

3 CASE STUDIES OF SOFTWARE PROCESSES

There is a long history of case studies exploring the relationship between scientific research and
software development practices. Reviews of case studies provides an overview of the state of the
field and the proliferation of particular methods, tools, and best practices. Each case study reviewed
here reported on one or more scientific software development effort of the following types:

• Significant collaborative infrastructure efforts that receive contributions from a mixture of
scientific and “professional” software developers, for example, Heroux et al. [72], Matthews
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et al. [110]. These projects employ a core of professional software developers who act as
“gatekeepers” for key infrastructure components. Parts of the software that are consid-
ered critical to the scientific domain will also be managed by domain experts. Scientist-
developers contribute code developments as part of a managed process.

• Professional software developers working on scientific software on behalf of domain expert
researchers. These professional developers may either be members of the same research
group, but with a distinct role in software development, or working to contract, for example,
Segal [156].

• Single or small groups of scientists developing analytical software for themselves. These
scientist-developers are likely to be self-taught in programming and have little exposure to
software engineering principles or practices, for example, Chilana et al. [31] and Hannay
et al. [66].

This section provides an overview of these published case studies to date and is organised into
themes that emerged from the literature: a review of the general case studies of scientific program-
ming in practice, experiments with agile methods, the impact of project team evolution, and the
development of best practice guidance.

3.1 Scientific Programming in Practice

Heroux et al. [72], Matthews et al. [110], and Dubey et al. [47] all reported case studies of long-
term scientific software development efforts from the perspective of the project teams. Heroux
et al. [72] described the software engineering practices within the Trilinos project. The report
emphasised the importance of software quality, maintainability, modularity. A strategy of min-
imising the effort associated with these goals is pursued through automation of tasks wherever
possible. For example, a standard package template is available to minimise the effort associated
with sub-project initiation. Matthews et al. [110] described the software development practices
at the United Kingdom’s Meteorological Office. The study focused on the group’s configuration
management practices, and the adoption of customised tool support (FCM) for change manage-
ment and compilation. Dubey et al. [47] reported on the history of experiences of developing code
in the FLASH project, a “multi-physics simulation code” that is also a merger of several prior
code bases. These projects are representative of many of the challenges faced by large-scale sci-
entific software infrastructure collaborations, including: compromising between feature demands
and quality control; code ownership and management during evolution; data organisation and
curation; and quality assurance of heterogeneous components. In particular, the studies found
that the groups developed customised tool support because the existing tools did not meet their
needs.

Other researchers have acted as external observers of scientific software projects. Hannay et al.
[66] investigated how scientists develop software, using an online survey. The research concluded
that, despite software being crucial to scientific practice, the dissemination of knowledge about the
use and development of software occurred internally within disciplines. Generally, scientists do not
learn about software engineering techniques from software engineers. The results presented by
Hannay et al. could be caused by a number of factors, including poor communication of the effect of
poor quality software on science, or the unavailability of appropriate software tools and methods
for scientific programming. Nguyen-Hoan et al. [124] conducted a similar survey of participants
in scientific programming projects, with many similar findings to Hannay et al. [66].

Chilana et al. [31] compared the software development practices of computing science and
molecular biology professionals engaged in the development of software for bioinformatics in
both research and production. The research focused in particular on information gathering
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practices during software development. Similar to Hannay et al. [66], the research found that
developers from all backgrounds depended on a decentralised and informal approach to infor-
mation gathering to solve problems.

Morris [118] reported his experiences of reviewing scientific programming projects. Morris
identified a tendency for prototyping practices to be employed even when production scientific
software was being written. As a consequence, the software reviewed was of low quality, high
complexity and contained a considerable amount of duplication. Morris notes that a number of
practices and tools have been developed within software engineering to address the deficiencies
identified in the review.

Segal [156] reported a case study in which an external team of professional developers was con-
tracted to provide a library of software components by a research organisation. Segal concludes
that linear, plan-based engineering methods are ineffective in the context of scientific software de-
velopment because scientific domain experts are unlikely to be able to fully state the requirements
for the software at the start of the development process. Further, the process of preparing a require-
ments specification did not establish a common understanding of the requirements. In particular,
the requirements specification was treated as a complete document by the software engineers,
whereas the scientists assumed that it represented an outline into which additional features could
be incorporated later.

Based on the earlier work, Segal [157] later proposed a process model for scientific software
development by scientists, based on several case studies. The model illustrated Segal’s perception
that validation is informal and based on an expert’s expectations of the software’s output. Segal
noted the potential for conflict between this approach to iterative development and validation and
traditional plan-based, requirements-driven software development process models.

Later, Segal [158] investigated the early phases of scientific software development, typically
involving small project teams. The work illustrated the typical development process in scientific
programming using an iterative model, in which successive iterations are driven by an informal
assessment of the behaviour of the software artefact, in relation to the expectations of expert users.
Segal noted that this approach to software development, while successful for rapid prototyping and
proof of concept work, can introduce obstacles to the development of production quality systems
that can be disseminated in a peer community.

Based on observations of scientific software development over more than a decade, Kelly [88]
argued that activity in the domain is primarily concerned with knowledge acquisition rather than
software production. Kelly argued that this model reflects the need for scientists to explore a prob-
lem through the software and identifies how this affects the practice of software development. For
example, Kelly notes that many of her participants emphasise the preparation of readable, self-
documenting code, because readable code is easier to inspect and discuss with colleagues. Simi-
larly, tests and inspections are used to understand how software functions, rather than to explicitly
detect or prevent the creation of defects. In later work, Szymczak et al. [175] proposed the use of
literate programming tools to capture the knowledge acquisition process described by Kelly.

Carver et al. [29] and Kendall et al. [96] investigated a diverse collection of six case studies (the
“Bird” projects) of scientific software development practice using a mixture of questionnaires and
follow-on interviews. The purpose of the research was to develop a body of knowledge of domain
challenges and good practices in scientific programming. The authors’ findings support many of
the conclusions of the surveys of practitioners already described. Team sizes were between 3 and
20 participants at any one time, with larger teams generally responsible for longer-term “infras-
tructure” efforts supporting a larger number of customers and code bases. Two of the case studies
were in “maintenance mode,” providing volunteer support for bug fixes, but not implementing
new features due to a lack of interest from customers and sponsors.
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Project practices vary considerably, but most projects had adopted source code management
and many of the characteristics of “micro” software development teams [45]. Requirements were
generally gathered informally from end users and defect tracking was predominantly handled
by internal project communications, rather than formal systems. Working practices varied from
team to team, depending on scale and resources. However, a unifying theme for all of the projects
was the need for multidisciplinary project teams consisting of both domain specialists and com-
puter scientists/software engineers. This view is validated in the case studies by earlier failures
in which mono-disciplinary periods of a project were felt not to deliver systems required by
users.

Hochstein and Basili [76] also reported a series of case studies focused on parallelisation efforts
in scientific software drawn from the Advanced Simulation and Computing (ASC) Alliance. These
projects were generally larger than those reported in the Bird case studies, with typically as many
as 75 participants, although core developer teams were somewhat smaller. This project structure
is similar to that described for the ATLAS project at CERN [46, 75, 119]. Different parts of the soft-
ware effort are subject to different verification and validation activities as a consequence of these
different forms of contribution. Core infrastructure components often have extensive regression
test suites maintained by the core infrastructure team. Conversely, “peripheral” code contributions
may be accompanied by unit tests, but this is not mandated by the project. A consequence may
be that assessments of software quality in these projects may be more difficult due to the variable
coverage and effort [113].

Understanding the practices in scientific programming is an active research area, with several
authors detailing plans for future research. For example, Heaton and Carver [69] found a vari-
ety of often contradictory claims in the case study literature as to the effectiveness of software
engineering practices in scientific programming. Crabtree et al. [37] reported work in progress
to understand the application of agile software development methods in case studies of scientific
programming projects. Henderson and Perry [70] described plans to conduct similar interview led
research at their home institute. Mesh and Hawker [115] and Mesh [114] reported plans to employ
grounded theory to develop a process improvement strategy for scientific software development
processes.

3.2 Agile Methods

Several studies have specifically explored the use of agile methods and practices in scientific pro-
gramming teams. These studies have suggested that agile practices for requirements gathering and
quality assurance may better fit the dynamic and concurrent nature of scientific software devel-
opment than plan-based approaches. For example, Ackroyd et al. [1] described the adoption and
subsequent adaptation of extreme programming (XP) practices within a software development
team supporting scientists working with synchotronic equipment. Ackroyd et al. [1] reported that
many agile principles and practices had been incorporated directly into the team’s processes. In
particular, they reported that an agile approach to requirements specification and planning en-
abled the team to elicit and prioritise requirements effectively. Conversely, other practices such
as test first development and shared code ownership were found to be less effective, due to time
pressures to complete new features, and the specialist natures of particular codes.

Wood and Kleb [191] reported their experiences of introducing agile practices to a proof of
concept numerical test bed project at the NASA Langley Research Center. The work illustrated
the cultural differences between the nature of the safety critical scientific work undertaken and
the ethos and principles of agile methods. For example, the established development processes
at the laboratory were highly document- and plan-driven, with an expectation that requirements
and design could be delivered upfront. This contrasted with the XP approach, which employs con-
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tinual re-evaluation of requirements and plans. Overall, the authors found that XP with adapta-
tions could be applied effectively to safety critical scientific programming. Blom [18] drew similar
conclusions as to the use of a combination of Scrum and XP based on his own experiences in
university-based projects.

Easterbrook and Johns [49] conducted an ethnographic study of the software development prac-
tices employed by climate scientists working at the Hadley Centre, part of the United Kingdom’s
weather forecasting service, the Meteorological Office. In contrast to the work of Hannay et al.,
Easterbrook and Johns [49]’s study identified examples of agile software engineering practices,
including automated version control management, code reviews, automated test harnesses, ticket-
oriented defect management and continuous integration. Shull [163] also interviewed climate sci-
ence researchers and reported similar practices at the Goddard Centre in the United States. Based
on interviews with practitioners, Sanders and Kelly [153] also reported a wide variety of agile soft-
ware engineering practices employed in different scientific programming domains. These practices
include iterative development, separation of prototyping and production development lines, and
formal user interface design techniques.

Several researchers have explored the application of agile methods in bioinformatics. Kane [84]
reported on his experiences of introducing agile methods into a team of contractors working in
a bioinformatics research laboratory. The team adopted practices gradually, beginning with the
introduction of source code version control and continuous integration. Later, the team adopted
more demanding practices that required the cooperation of the project customer. One particular
outcome of this was that the team discovered the practice of periodically reviewing and revising
the entire backlog to be a useful, if tedious, activity in an ongoing engagement with a customer.
This is not a practice advocated in main-stream agile software development guides. However, Kane
[84] found this an effective way of reviewing project priorities.

Later, Kane et al. [85] surveyed the practices of six software teams working in bioinformatics
research that either employed or had previously employed agile practices. Like Wood and Kleb
[191] and Ackroyd et al. [1], Kane et al. also found that many agile practices could be adopted
directly, given a development team of appropriate size. In contrast, however, Kane et al. found
that testing practices were much more developed in some of their case study teams. In particular,
one team’s acceptance tests were specified and developed by the project’s customer. This suggests
that closer collaboration between development team and customer is possible in some scientific
programming domains.

Pitt-Francis et al. [134] reported their experiences of applying agile methods to the develop-
ment of cardiac modelling software. Similar to Wood and Kleb [191], Pitt-Francis et al. found that
although many practices can be applied without alteration, some required adaptation for use in
scientific programming. For example, rather than frequently releasing software to users, releases
were associated with the publication of results, to retain a competitive edge for researchers. Pitt-
Francis et al. also found that some aspects of the academic culture in which they worked needed
to be adapted to apply agile methods. For example, there was a need to overcome reluctance to
share code within a team to achieve collective ownership.

Sletholt et al. [165] reviewed the case studies reported by Easterbrook and Johns [49], Kane [84,
Kane et al. [85], Pitt-Francis et al. [134], Wood and Kleb [191]] to understand the extent to which
agile practices from Scrum and XP are employed in scientific software development across a range
of projects. A key finding was that many agile methods can be used successfully in small-scale
scientific programming teams, with some adaptations. Sletholt et al. [166] went on to undertake
their own case studies, which concluded in contrast that the application of agile practices was
rather more varied. Practices appear to be adopted on an ad hoc basis, rather than as a conscious
decision to employ a comprehensive approach to agile methods. It may be noted that Beck and
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Andres [12] also advocated a gradual, rather than comprehensive introduction of agile methods
into software teams.

3.3 Project Team Evolution and Software Documentation

Hannay et al. [66] and Pitt-Francis et al. [134] separately observe the evolutionary nature of the
“development team,” as participants (typically graduate students or post-doctoral researchers) join
and subsequently leave a research group at regular intervals once their project is complete. This
means that the principle contributors to a scientific software code base may change frequently
during the lifetime of a project, in a similar (although more regular and predictable) way to open
source projects. A consequence of the constantly evolving research team is that no one contributor
may have a comprehensive understanding of the system source code [95, 134]. Indeed, the system
may begin to adopt the features of a legacy system, from which the original developers have long
departed.

The constant change in project contributors may be a reason that comprehensive documentation
is valued more highly in scientific programming projects, as reported by Dubey et al. [47], Fangohr
et al. [53], and Chilana et al. [31]. Chilana et al. reported the importance of detailed source code
documentation in the scientific programming community. This finding contrasts with prevailing
philosophy in many domains that have adopted agile practices, in which extensive documentation
is deprecated in favour of clearer, “self documenting” code.

By contrast, when Sanders and Kelly [153] investigated programming language choice for sci-
entific development they noted that developers valued domain-specific languages (DSLs) and en-
vironments, such as MATLAB because they facilitate a close relationship between documented
theory and executable program source code. Domain-specific programming languages have also
been proposed for specific scientific fields. For example, the Braincurry language [125] has been
designed to support the specification and implementation of experiments in Neuroscience. In re-
lated work, Smith et al. [169] and Yu and Smith [194] proposed a method for comparing families of
computational models using a standard analysis template. The purpose of the research was to im-
prove the clarity of model documentation and enhance decision making when choosing between
related models.

Given the proliferation of domain-specific languages, there is relatively little research in the
literature on the software engineering benefits of DSLs for scientific programming, such as read-
ability, maintainability or reproducibility of experiments. However, DSLs are generally restricted
to the concepts and concerns of the problem domain at hand [180]. In the context of scientific pro-
gramming, this could substantially eases the task of comprehension, comparison and analysis of
a scientific experiment, since the ways in which an experiment could be implemented are tightly
constrained and the key concepts of the science are directly supported in the language. The pro-
liferation of DSLs for a single domain or set of related domains could also pose advantages that
the availability of a multitude of general purpose programming languages do not. The restricted
nature of DSLs might potentially ease the re-implementation of the same software experiment in
several different DSLs to achieve greater confidence as to the reliability of the results, since any
variations are less likely to be due to “internal” variations in how an experiment is implemented.

3.4 Best Practices

Several authors have proposed sets of best practices for software engineering in scientific pro-
gramming efforts [48, 73, 91, 173, 187]. These proposals are typically based on the author’s own
experiences of “what works” or observations of work in case studies. For example, Kelly et al. [91]
and separately Wilson et al. [187] summarised best practices for scientific programming based on
their previous experiences in this domain. Earlier, Wilson and Lumsdaine based many of their best

ACM Computing Surveys, Vol. 50, No. 4, Article 47. Publication date: August 2017.



www.manaraa.com

A Survey of Software Engineering Practice in Scientific Programming 47:11

practices on experiences developing the Software Carpentry course [188]. Heroux and Willenbring
[73] focus on practices that are recognisable from agile methods. Indeed, all the proposals included
many practices already common in software development in other domains, such as maintaining a
separation of concerns, pragmatic decisions about documentation, source code management, code
reviews, continuous integration and test case development. Gent et al. [61] made similar argu-
ments (particularly regarding the fundamental importance of source configuration management)
more than a decade earlier.

Andersen et al. [4] proposed several existing software development practices that can be em-
ployed in a scientific development domain to address challenges identified by Axelrod [8]. For
example, close cooperation between software developers and domain experts (as in the Extreme
Programming process) is advocated as a means of minimising discrepancies between theoretical
models and implementation, whilst enhancing long-term maintainability; the specification of use
cases to enhance the accessibility for other scientists to inspect and configure the system; and the
partition of software into modules with well defined responsibilities.

Post [136] and later Kendall et al. [97] reported on the applications of lessons learned in previ-
ous case studies as best practices in the planning for a large-scale (characterized as $360 million
over twelve years) scientific programming project. The aim of the CREATE programme was the
development of a suite of computational research tools that could be employed by United States De-
partment of Defense (DoD) equipment acquisition teams for modelling and analysing new weapon
systems through access to HPC facilities. Post [136] anticipated that a significant challenge for the
CREATE programme would be the tension between the application of agile principles to devel-
opment team coordination and the demands of the wider organisation’s established policies and
procedures. This expectation was later confirmed by Kendall et al. [97] who reported that this risk
had been mitigated in several ways, including the formation of development teams from multi-
ple DoD institutions; adapting agile planning processes to fit with DoD policies and developed
cross-institution communication using video conferencing and other facilities.

4 QUALITY ASSURANCE PRACTICES

The relationship between computational models and their implementation in software is crucial to
the reliability of scientific results [178]. There is no direct relationship between software quality as-
surance and correctness, and quality assurance processes cannot guarantee the absence of defects
in software. However, it is generally accepted by software engineers that the absence of quality
assurance practices is associated with a higher rate of defects in software. Similarly, the absence
of quality assurance processes means that a project suffers from higher risk of the introduction of
defects over time.

Several authors have argued for far greater value to be given to the verification and validation
of scientific software, particularly implementations of models used for simulation and prediction.
Post and Votta [138], for example, refers to the need for a paradigm shift in this area. Indeed,
advocates of software validation in scientific programming were making their arguments as early
as the 1960s [83, 121]. There are several reasons for a lack of software quality assurance practice
in scientific programming reported in the literature:

• Theoretical (often mathematical) models and their associated software implementations and
empirical data become conflated [49, 88, 92, 99, 153, 170, 183]. For example: Calder et al. [21],
in an extensive discussion of verification and validation of the FLASH multi-physics code
refers to verification as “the process of determining that a model implementation accurately
represents the developer’s conceptual description of the model” but only defines “model”
and not “implementation” as a first class artefact; and Kelly and Sanders [92] reported that

ACM Computing Surveys, Vol. 50, No. 4, Article 47. Publication date: August 2017.



www.manaraa.com

47:12 T. Storer

one of the scientists they interviewed was reluctant to allow software engineers to review
or modify program source code because they perceived it as “my model” and noted that
they “pursued causes for their outputs not matching expected results” (author’s emphasis).
Consequently, the importance of verifying the correctness of model implementations with
respect to a theoretical design (quite apart from validating them) may not be recognised or
accepted.

• Software is not perceived as a distinct and valuable contribution to scientific research. Kill-
coyne and Boyle [99] and Spinellis and Spencer [170], for example, interviewed two re-
searchers working in climate science research. The interviews highlight a common view
of the use of software in experimental research, that software development “cannot be al-
lowed to get in the way of the science.” Basili et al. [10] makes similar observations from
the perspective of their experiences of the high performance computing community. Quite
reasonably, the goal of scientists is to produce scientific results, not software. However, an
unfortunate consequence may be that the complexities and risks of using software as a sci-
entific instrument are not well understood by end users. Equally, computer scientists can
be reluctant for their discipline to be treated as a service to other sciences [190].

• Scientists and engineers over-estimate their ability to produce high quality software. Carver
et al. [22] found that awareness of many software engineering practices was relatively low
in the respondents to their survey. Despite this, self-assessment of the respondents’ ability to
produce software of sufficient quality for their work was very high. The authors concluded
that the results of the survey supported their contention that scientist-developers “don’t
know what they don’t know” [22].

• There is a poor dissemination of software engineering practices amongst developers in sci-
entific programming projects. As already noted, many developers engaged in scientific pro-
gramming are largely self-taught, or taught by a scientific domain expert. Umarji et al.
[179], after conducting a survey of bioinformatics researchers, found that the dissemina-
tion of software engineering practices was variable. Their review of educational material
for bioinformatics courses also found few references to software engineering, or the risks
associated with low quality software. Consequently, scientific software developers may not
be aware of the potential and consequences of discrepancies between design and imple-
mentation.

• Software engineering quality assurance practices are inappropriate for scientific program-
ming because they do not fit well with the constraints of the domain [99]. In particular,
most software engineering practices assume development efforts of substantial size in or-
der to achieve a cost benefit return on investing in the practice. However, the size of many
scientific programming efforts may not justify these upfront costs [55]. Separately, most
software development practices assume that requirements can be established and stabilised
for a reasonable period of time (even agile methods assume requirements will not change
substantially over a single iteration). Conversely, requirements in scientific development
may undergo very rapid change, increasing the cost of applying quality assurance prac-
tices, such as refactoring and test-driven development.

Despite these challenges, there is evidence in the literature that some scientific software de-
velopment efforts are adopting (and adapting) existing quality assurance practices from software
engineering. In particular, Oberkampf et al. [128] proposed a capability maturity model for phys-
ical modelling and simulation software, based on the Carnegie Mellon Capability Maturity Model
(CMM) [35]. The model identifies different stages of maturity for different aspects of model and
software development assurance, including, for example, the fidelity of the theoretical model to
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real world phenomenon and software code verification practices. Similar ideas for multiple aspect
assessments of simulation software were proposed much earlier by Naylor and Finger [121], with
particular emphasis on the predictive capability of the simulation.

The approach adopted by Oberkampf et al. identifies different factors that influence the relia-
bility of modelling and simulation predictions, such as the fidelity of the model to real physical
properties of the target system and the extent of efforts to ensure correct numerical implementa-
tion of relevant algorithms. Each of these factors is associated with an ordinal maturity level for
predictive capability, ranging from 0 (accuracy is based on informal judgement and experience) to
3 (accuracy assessment is formal, detailed and evidenced). A CMM typically provides a framework
for directing domain-specific quality assurance efforts, without mandating specific practices.

Other researchers have investigated specific techniques to address quality assurance for sci-
entific programming. Techniques for validating scientific programming artefacts include source
code inspection, static analysis, formal refinement techniques and software testing. Experiences
of applying these techniques in different contexts are discussed in the sub-sections below.

4.1 Testing

Case studies of scientific software development have suggested that a variable amount of effort
can be applied to the development of test harnesses [132]. A key challenge found by Kanewala and
Bieman [87] is the availability of a test oracle: a means of computing an expected result for compar-
ison with the output from the software under development. Oracles come in a variety of forms, in-
cluding manual computation, earlier prototypes and third party reference implementations [186].
A challenge in scientific programming is the difficulty of developing a test oracle independent of
the software under development [4, 92, 94, 170, 186]. If the purpose of the software is to test a
hypothesis, the expected output is unknown and in principle any output from the software could
be correct, independently of whether the output supports the hypothesis or not. In practice, partial
oracles exist that permit many erroneous outputs to be detected because they are impossible. The
more subtle challenge for software testing is to detect outputs that are feasible, but incorrect. In
the context of climate science, for example, observations of climate variables such as atmospheric
pressure at different altitudes and oceanic temperature in principle provide an oracle for software
simulations of climate behaviour as a result of different forcings. However, these records are mostly
limited to the twentieth century, and even then require considerable processing and integration to
account for different data collection methods and tools, as well as variability in the location and
context of weather stations over time [50, 143].

Exacerbating this problem, Chilana et al. [31], Easterbrook and Johns [49], Hook and Kelly [79],
Sanders and Kelly [153], Segal [159], Shull [163] all noted the tendency for scientists to depend on
their own expertise and expectations as to outputs to validate model implementations. This finding
was also reported by Kanewala and Bieman [87] as part of a systematic literature review of testing
scientific software. Easterbrook and Johns [49] reported that climate scientists treat the software
implementations of models as “evolving theories” and are consequently less concerned with “code
correctness” in relation to a theoretical model. In this approach, an experimental change to code
is evaluated against a results from a previous version of the model. Sanders and Kelly [153] noted
that if an unexpected result occurs it may result in changes to either the underlying theory or
the source code. However, it may be difficult to determine whether an unexpected result is a con-
sequence of an invalid theory or an imperfect implementation of the theory in source code [4].
Further, conclusions may be at risk of confirmation bias, because results that appear to confirm
a theory may not be investigated further, even though they are an artefact of the implementa-
tion (a defect) [139]. Such problems afflict other complex experimental tools, but the tempo of
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software development and evolution compared with the manufacture of physical artefacts makes
this problem particularly acute.

Despite these obstacles, there is evidence in the literature of considerable interest in the test-
ing of scientific codes. For example, Clune and Rood [34] reported a range of quality assurance
practices employed in a case study in climate science. Pipitone and Easterbrook [133] compared
defect density rates in a selection of global circulation models (GCMs) with those found in the
open source projects Apache, VTK and Eclipse. The authors concluded that reported defect rates
in the GCMs were generally lower than in the open source projects, suggesting that the software
quality of the GCMs was at least as high, if not higher than the open source projects. However,
as the authors note in their discussion of threats to validity, reported defect rate is dependent on
both the underlying rate of defects in a software system and the extent of efforts to uncover de-
fects through quality assurance practices such as testing. A low defect report rate may be equally
indicative of limited efforts to discover defects, particularly since the authors report their own dif-
ficulties in identifying defect reports in the GCM project artefacts. Despite these limitations, the
work still demonstrates evidence of the practice of bug tracking in scientific programming.

Calder et al. [21], Hochstein and Basili [76] advocate the use of laboratory experimental results
as an oracle for validating simulated results. However, the authors also note several obstacle to this
approach, during an extensive discussion of the verification and validation activities undertaken
on the FLASH multi-physics code. First, the interplay between the different parts of a code that
represent physical phenomena can make the separation of concerns during testing difficult. For
example, in the case of FLASH, errors in the code may be masked by inappropriate selection of
equations of state during testing. Disparity between actual and expected test results may be due
to either and the two are difficult to test in isolation. Second, physical experimentation for testing
may not be able to adequately replicate the real phenomena of interest. Replicating the physics
and chemistry of the internal state of a particular type of star, for example, is not feasible in a
conventional laboratory experiment. Third, even when laboratory experiments are available, the
diagnostic instrumentation may not have sufficient resolution compared to the results obtainable
from simulation (or for the desired results of the science). Finally, natural variation may occur in
the setup conditions of the experiment. This real world complexity will complicate comparison
with results from an idealised computational simulation.

One option proposed by Trucano et al. [178] to encourage the development of testing infrastruc-
tures is to deny funding for experimental validation activities for computational science projects
that lack verification processes for simulation codes. As Trucano et al. argues, experimental ac-
tivities are often very expensive (hence the need for computational simulations) so it may not be
unreasonable to focus resources on projects that can demonstrate high confidence in the correct
code implementation of (potentially imperfect) simulation models. This approach would imply a
staged QA process, in which codes progress through formal or semi-formal verification steps be-
fore securing funding for model validation once sufficient confidence in code correctness justifies
the resource expenditure. A potential disadvantage of this approach is the disruption caused to a
experimental/exploratory approach to scientific research.

Other research has concerned the development of new approaches to testing which account for
the oracle problem described above. Hoffman [77, 78] proposed the use of a variety of “real world”
test oracles as a means of addressing the paucity of other options in scientific programming. For
example, heuristic oracles provide correct expected results for a subset of selected inputs. Inputs
between these values are checked using a heuristic that relates them to the selected input output
combinations. Similarly, Weyuker [186] observed that testing without an oracle could still be useful
if the properties of an incorrect output are known (an output value outside the range [−1...1] for
an implementation of the sine function, for example).
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Betz and Walker [15] argued that results from previous executions of a software application
can be useful as a test oracle, since this allows developers to detect when a change to code has
caused an unexpected change in behaviour. Betz and Walker demonstrated this approach through
the adoption of continuous integration in the AMBER project. The technique is similar to the
development of test cases at the start of a software refactoring process [56]. Similarly, Wang et al.
[184] described a proposal for developing regression tests for individual modules by deriving input
and expected output combinations from full experimental runs of a larger integrated system. The
approach assumes that in well designed systems functions should behave in an identical way,
whether integrated in a simulation or exercised from a test harness (implying that functions do
not depend on system state or have side effects).

Shull [163] reported that his climate science interviewees would use simulations of simple ge-
ographies (perfectly flat planets, for example), for which the correct climate behaviour, according
to the model, can be predicted analytically. It is unclear how these simpler test cases can be used to
assess the overall correctness of the full implementation. For example, Shull [163] does not indicate
what proportion of the source code base was exercised as a consequence of these automated tests.
Andersen et al. [4] sketched a similar approach to validating simulations of theoretical models,
using older, presumed reliable simulations or simpler configurations as test oracles. In this ap-
proach, the results from the new simulation are compared with those from the older tools where
their domains of input overlap.

Both Roache [148] and Hook and Kelly [79] argued that the dependence on domain expertise
for validation testing is unavoidable and therefore there should be a clear separation between
verification and validation activities. The test regime described by Calder et al. [21] for validating
FLASH is an example of this dependence: the extensive test suite is built from standard problems
in the domain and the selection of the appropriate test case requires the expertise of a domain
expert. Hook and Kelly concluded that the scientific validity of software should be considered in
terms of trustworthiness (is the result produced by the software believable) rather than correctness.
The implication of this approach is that it is important to assess the thoroughness with which a
scientific developer has evaluated their code for trustworthiness.

Hook and Kelly [79] and Hook [80], therefore, took an alternative approach by proposing the
use of mutation testing [44] to evaluate the effectiveness of a scientific software application’s test
suite. Mutation testing works by applying the existing test suite to a randomly “mutated” version
of the target application. Mutations include substitution of operators, alteration of constants and
alteration of conditional structures. The number of tests that fail as a result of a mutation gives an
indication of the effectiveness of a test suite in detecting the inadvertent introduction of defects.
Later, Kelly et al. [89] used Hook’s [2009] mutation testing techniques to investigate the effect of
reducing oracle tolerances on test suite performance. The work suggests that the availability of a
high precision oracle is more effective in uncovering defects than generating more test cases for a
lower precision oracle.

Kanewala and Bieman [86] also investigated the problem of testing without an oracle and pro-
posed the use of metamorphic testing. This technique identifies relations over the properties of
the inputs and outputs of a software process that should hold if the input changes. A function
that sorts a list of n elements should always output a list of n elements, for example. Consequently,
metamorphic testing is useful in identifying incorrect outputs as described by Weyuker [186] (out-
puts that cannot be right), rather than for acceptance testing. Later, Lundgren and Kanewala [106]
evaluated metamorphic testing for a gene sequencing toolkit. The results suggested that metamor-
phic testing was more effective at detecting faults than through comparison with an alternative
sequencing tool.
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Remmel et al. [145] proposed another methodology for developing test suites by treating a fam-
ily of scientific software applications based on a common software frameworks as a single software
product line. Remmel et al. argue that this approach allows the development of test cases for the
framework based on an analysis of typical use cases amongst the family of applications. In ad-
dition, the method allows the development of reusable test cases that can be employed in future
applications. In effect, this approach allows for the shared development of a test oracle between a
family of related applications.

A particular challenge reported in the ASC projects was the difficulty of verifying (and validat-
ing) parallel codes [76]. It is not clear whether defects were predominantly resident in the design
or implementation of the algorithms, since (as noted above) these are often not distinguished by
developers in scientific computing projects. For example, the authors report situations in which
the number of processors assigned to a task is a factor in the manifestation of defects, which could
indicate either design or implementation defects (or both). The MPI framework was identified as
a particular cause of these problems, due to a lack of abstraction of parallelisation mechanisms.

4.2 Inspections

Several authors have proposed the use of inspections as an alternative quality assurance practice
to software testing. Inspections depend on domain expertise for the discovery of defects, rather
than the availability of a test oracle, so may be more effective for scientific programming. Hatton
[67, 68], for example, investigated software quality in a large (several million lines of code) seismic
data processing application. Hatton employed both static and dynamic analysis of the software.
The dynamic analysis in particular demonstrated that the presence of loss of precision defects was
so severe as to make the results of the software application essentially equivalent to a random
function [67].

Kreyman et al. [101] reviewed sources of defects in software-based scientific models and pro-
posed an inspection technique based on this taxonomy. The taxonomy covered defects in require-
ments (inappropriate selection of models), design (discrepancies between model and program), im-
plementation (such as logical and numerical defects) and during component integration. Although
the inspection procedure is accompanied by an illustrative example, it is unclear how much effort
and expertise is required to apply the technique effectively. The authors note that the approach
is highly dependent on the adoption of an interdisciplinary approach, and thus engagement and
interaction of software engineers and scientists.

Kelly and Shepard [93] proposed a technique based on software inspections for detecting dis-
crepancies between models and source code implementations of software-based experiments.
The technique combined a mandated software documentation exercise with inspections intended
to identify discrepancies. A key aspect of the technique was to allow inspections to run over
the long term, collating reports as individual inspection tasks were completed. This meant that
new versions of the software system were released during the inspections, requiring ongoing
integration.

Later, Kelly and Sanders [92] investigated the methods employed for assessing the quality of
scientific codes in practice, based on interviews with scientists in a variety of domains. Kelly and
Sanders observed that none of the interviewees reported the use of software inspections, noting
that this techniques depends on recruiting inspectors with expertise in both the problem domain
and software development. Kelly and Hook [90] went on to explore the use of inspections as a
means of driving test case development. In the case study, a domain specialist used a debugger to
follow the steps of a software system to improve their understanding of its behaviour. White box
test cases were then developed, leading to the successful discovery of defects that Kelly and Hook
claimed would not have been discovered without the inspection step by a domain specialist.
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4.3 Continuous Integration

Continuous integration is a relatively recent software engineering practice intended to minimise
the disruption caused by continuous and concurrent changes to software. Betz and Walker [15]
and Bartlett [9] report the use of continuous integration in scientific programming efforts. Betz
and Walker [15] reported on the experience of adopting continuous integration in the AMBER
(a molecular simulation application) project. Betz and Walker described the AMBER project as a
collaborative, distributed development effort, used for a diverse range of purposes and on a di-
verse range of hardware platforms (including commodity processors, graphics processing units
and super-computers). Consequently, ensuring consistency of results within these parameters is
complex and potentially costly in terms of researcher time.

Bartlett [9] investigated a more complex scenario for software development in which the devel-
opment of a scientific software project is coupled to the concurrent but autonomous development
of a a third party library. Bartlett argues that in this context, there is a need to ensure application
development is undertaken against the most recent version of the library to minimise disruption
caused by significant code changes; whilst also allowing collaborative development of both appli-
cation and library to be undertaken simultaneously. Bartlett proposes a model of “almost continu-
ous integration,” in which most application development occurs against the latest daily release of
the library, whilst significant collaborative changes are implemented in branch developments that
are only merged with the main product line for a major release.

4.4 Formal Methods

Formal methods, typically involving the mathematical specification and verification of computer
programs, appears to have received little attention in the scientific programming community. This
may be due to the additional challenge of verifying programs that manage floating point data [64].
However, some experience reports have been produced using formal techniques [41, 65]. Gunnels
and van de Geijn [65] explored the application of formal methods to the development of a linear
algebra environment (FLAME). Gunnels and van de Geijn argued that there are several benefits
to adopting formal methods in this context: the potential to prevent the introduction of defects
and establish the correctness of code methodically; a stronger relationship between mathematical
descriptions of algorithms and their development in code; and (semi)-automated translation into
executable program code. However, it is notable that the authors do not attempt to demonstrate
that the C implementation in their case study is correct with respect to the abstract formal descrip-
tion. de Oliveira et al. [41] described their ongoing efforts to integrate formal software assurance
methods for parallel computation into the Unitah framework, a multi-physics problem solving en-
vironment. The reported aims of the work are to develop techniques for checking for scheduling
defects in massively parallel software applications through perturbations of schedules.

5 DESIGN, EVOLUTION, AND MAINTENANCE

The dominance of simulation of physical phenomena in scientific computing has meant consider-
able attention has been given to improvements in the fidelity and performance of software-based
simulations [3]. However, the growing complexity of scientific software applications, coupled with
continued improvements in computing power has meant that the costs of software production
and (more importantly) maintenance are becoming increasingly significant. Scientific software
may be extremely long lived and as a consequence subject to regular maintenance activities as re-
quirements change. For example, Post and Kendall [137] state that codes developed for simulating
nuclear explosion yields may have a lifetime of 40 years or more. Sanders and Kelly [153] re-
ported that participants in their case studies of scientific programming were already encountering

ACM Computing Surveys, Vol. 50, No. 4, Article 47. Publication date: August 2017.



www.manaraa.com

47:18 T. Storer

common problems associated with software maintenance of large-scale, long-term projects. These
problems included difficulty in adding new features or repairing defects. The interplay between
design activities and software evolution in scientific programming has been addressed by several
different research efforts. This section outlines the major themes in the literature concerning the
management and maintenance of design in long-term scientific software projects.

5.1 Component Architectures

Boisvert and Tang [19] edited a collection of articles investigating the architecture of scientific
software. The collection is divided into two main themes: the integration of heterogeneous com-
ponents; and the structuring of single components for scientific applications. Much of the work
on integration of components mirrored similar activities in other domains during the period. René
et al. [146] describes the development of a component framework for parallel computations using
CORBA, for example. Similarly, articles grouped in the second category reflected the parallel in-
terests in object-oriented design, such as Ahlander et al. [142] and Thuné et al. [177]’s work, for
example.

Allan et al. [3] presents an overview of the Common Component Architecture, a component
middleware standard designed specifically for the needs of scientific computing. Allan et al. ar-
gued that component middlewares for scientific computing must fulfil several specialised criteria
including support for scientific programming languages, such as Fortran, native support for com-
plex numbers, the minimisation of middleware overheads and flexible implementation of local
and distributed components following a variety of communication models. The architecture, as
described, is intended to fulfill these objectives. At the time of publication (2006), the approach
had been demonstrated within a variety of scientific domains, including combustion modelling,
climate science, and quantum chemistry [3].

5.2 Design Patterns

Several authors have explored the application of software patterns (as popularised by Gamma et al.
[57]) as a means of managing the complexity of scientific software. Decyk et al. [43] investigated
the migration of legacy Fortran programs into C++ through the intermediate step of implementing
object-oriented concepts in Fortran 90. The work showed that many object-oriented concepts such
as encapsulation, inheritance, and (to a certain extent) polymorphism can be expressed in Fortran
90 as software patterns enforced by convention rather than language constructs. It is unclear from
the report, however, whether applying these patterns would enhance the quality of code written
in Fortran 90, since there is a significant amount of “boilerplate” code required for each construct.

Decyk and Gardner [42], Norton et al. [126] later extended this work by demonstrating the
implementation of a selection of object-oriented design patterns [57] in Fortran 90/95. For example,
Norton et al. demonstrated the application of the Strategy pattern to the management of variations
in algorithm implementation, whilst Decyk and Gardner applied the Factory pattern to the creation
of particles of different types in a simulation of plasma.

In parallel work, Markus [108] also illustrated the implementation of a selection of design pat-
terns in Fortran 90/95 and later revisited a selection of these patterns in Fortran 2003 [109]. In
addition, Rouson et al. [150] explored the application of creational design patterns in Fortran 2003,
with a particular focus on avoiding memory leaks due to unused but none-deallocated objects.
Similarly, Gardner and Manduchi [58] presented an extended tutorial on the application of con-
ventional design patterns to a scientific programming project (a waveform browser with a variety
of applications). The aim of the book was to demonstrate the applicability of design patterns and
refactoring techniques to scientific programming efforts.
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Several authors have also considered the development of patterns tailored to specific scientific
programming requirements. Cickovski et al. [32] proposed a series of patterns derived specifically
from the recurring design problems in scientific software. The work showed that the recurrence of
similar software design problems (albeit specific to scientific programming) can be addressed using
established software engineering techniques. This suggests that the principles for high-quality
software design established in other domains are equally applicable to scientific programming.
In addition, the article identifies a domain-specific collection of patterns for modelling molecular
dynamics.

Billie [16] proposed a selection of patterns for simulations, including simulations of discrete
and continuous phenomena. The work identified the key collaborating classes in each pattern that
would form the basis of a re-usable solution. Rouson et al. [149] also explored scientific software
patterns, proposing several patterns for managing the interactions between software implementa-
tions of semi-discrete simulations. For example, the semi-discrete pattern contains standard meth-
ods for advancing the time-step of a simulation, but management and representation of simulation
data is handled by the realising class. Similarly, the Puppeteer pattern (a variant of Mediator) re-
duces the complexity of interactions between different coupled simulations.

5.3 Refactoring and Reengineering Techniques

Design patterns, as discussed in the previous section, are often applied during the refactoring [56,
98] of legacy software code. Researchers have investigated the use of refactoring techniques in the
maintenance of legacy scientific development efforts. Arora et al. [7] proposed the reengineering
of legacy scientific codes using generative or aspect-oriented technologies, such that existing ap-
plications can be augmented with new features without altering core functional behaviour. They
demonstrated a proof concept by augmenting an existing application with check points imple-
mented as higher-level abstraction aspects. Woollard et al. [192] addresses a similar problem by
demonstrating a technique for encapsulating legacy scientific codes within a component-oriented
framework. Woollard et al. [192] argues that this approach, involving only a limited amount of al-
teration to the legacy codes themselves, eases the process of architectural maintenance as system
requirements evolve.

Overbey et al. [131] investigated an alternative technique for refactoring legacy Fortran pro-
grams to remove deprecated program constructs with alternatives (replacing goto statements with
if constructs, for example). The work was preliminary, but presented a proof of concept for im-
proving the maintainability of legacy scientific codes without (in principle) affecting functional
behaviour. Norton et al. [126] also informally demonstrated the identification of refactoring op-
portunities during re-engineering of Fortran 77 to Fortran 90/95 program codes. Norton et al.
showed that long parameter lists in Fortran 77 could be reduced through the use of Fortran 90/95
module constructs.

Kelly et al. [94] reported a suggestion for developing reverse engineering tools tailored to the
scientific domain for extracting formulas from imperative source code. Li [105] outlined a case
study in re-engineering a legacy scientific software development through the reverse engineering
of a domain model and subsequently system requirements. Like Kelly et al., Li concluded that tools
tailored to the needs of the scientific programming community are required to support software
maintenance in this domain.

5.4 Workflow Management and Executable Research Papers

Rice and Boisvert [147] reviewed the state of the art in scientific software libraries in the mid
1990s, predicting the trend towards problem solving and scientific workflow environments. The
intention was that such tools would support the comprehension, management and distribution of
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computational experiments. There are currently several scientific workflow management tools
available for a variety of domains, such as Taverna [130] and the associated MyExperiment
platform [63]. Typically, these tools are web-based applications that provide facilities for imple-
menting new work flow components that can then be integrated into a whole workflow using
graphical modelling tools.

In the academic literature several other approaches are described. Smith et al. [168] described
proposals for easing the management of scientific software projects by treating related codes as a
family- or product-line. Smith et al. proposes the adoption of standardised templates for document-
ing the specifications of scientific software components to ease reuse. Vigder et al. [182] described
the development of a software framework for automating the integration of software-based tools
into scientific workflows. The work was motivated by an identified lack of automated support for
repetitive and time consuming tasks in a scientific development case study. One consequence of
the lack of automation was inconsistency in data and software management practices (inhibiting
reproducibility, quite apart from productivity).

Neves et al. [123] and Davison [40] have separately advocated automating the traceability of
computations to enhance repeatability. Neves et al. [123] proposed a framework to augment work-
flow management systems with mechanisms to track the evolution of data items during workflow
execution. The stated goal of the work is to enhance the provenance of scientific results generated
through software workflows, by tracking changes to intermediate data items as the workflow ex-
ecutes. Artefact evolution is tracked using software version control systems and data comparison
tools such as diff. Davison [40] took a different approach, proposing that computational experi-
ments should be run within a framework that automatically captures contextual information, such
as hardware configuration and the releases of dependencies. However, the significant context in-
formation may vary considerably between experiments, so it isn’t clear what characteristics a
general purpose framework should support.

Executable research papers (ERP) offer another mechanism for more closely relating experimental
artefacts and documentation [33]. Advocates of this approach argue that it reduces the risk of
discrepancy between experiment and report, because documentation is updated as the experiment
itself changes, rather than as a (potentially omitted) after-thought. In addition, the experiment itself
is portable and can be transferred to other researchers for review, analysis, re-implementation and
modification.

Quirk [141] proposed the use of the extensible features of the portable document format to
embed executable aspects of a computational experiment in a research article. The demonstrated
approach allows executable fragments of an experiment to be embedded by an author for later
execution, modification, and further experimentation by a reader. Quirk combined this approach
with program folds to provide a hierarchical mechanism for viewing program code at different
levels of granularity within an article.

Several authors have reported their experiences or provided tutorials of employing literate pro-
gramming techniques [100] in the practice of scientific programming. Quiney and Wilson [140]
advocates the use of literate programming in quantum chemistry research as a means of avoid-
ing the separation of code and documentation. Similarly, Nedialkov [122] provides a tutorial on
implementing the VNODE-LP solver using literate programming. The work was motivated by the
desire to gain assurance that the solver can be trusted for use in computing proofs as to the bounds
on numerical solutions. Nedialkov reflects on the experience of using literate programming, ar-
guing that it is best used after an exploratory, prototyping phase, once the overall design of a
program is understood and requires thorough documentation. Singer [164] demonstrated a pro-
totype for software systems research, recording experimental parameters and structure in a pro-
gram script along with documentation that later forms the basis for an automatically generated
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research article. Consequently, the experimental implementation and results co-evolve with the
documented experimental design and conclusions. Millman and Pérez [117] advocated literate com-

puting, a more interactive approach to literate programming, based on the growing availability of
electronic scientific notebook applications, such as IPython. In this approach, the notebook be-
comes the single, interactive focal point for both research development and peer review.

Several other approaches were reported in association with the Elsevier Executable Paper Grand
Challenge [59, 127, 181]. van Gorp and Mazanek [181] proposed a web-based portal for creating
and sharing ERPs. The aim of the work is to provide a facility for deploying shareable virtual
machines containing all the necessary software and dependencies required to execute an experi-
ment. The virtual machines are largely configured at the discretion of journal editors and authors
giving considerable flexibility as to the implementation of a software experiment. At the time of
writing, the authors had just begun to collect ERPs in the repository, so further evaluation of the
effectiveness of the approach will be required.

Gavish and Donoho [59] took a slightly different approach, advocating the adoption of a disci-

pline of verifiable computational results as a means of minimising the disruption to existing scien-
tific workflows that could be caused by demands for reproducibility. In this approach, computing
platforms (such as a virtual machine runtime) used to generate scientific results (synthesised data
sets, plots, etc.) are augmented with a plugin that archives the setup conditions and results of each
experimental run. Rather than including a result artefact directly in a publication, an author will
reference the result via a universally unique identifier that is generated as the archive is created.
As a consequence, a close relationship between scientific results and the conditions under which
they were produced is maintained.

6 DATA QUALITY

Many of the issues raised in the literature regarding software quality have also been identified in
the wider context of data quality. The growth in the size of research data sets and software process-
ing capabilities have led several researchers to consider quality from a data rather than software
process perspective. Wang and Strong [185] proposed a range of parameters for characterising
data quality. Later, Bergdahl et al. [13] developed a handbook of data quality assessment methods.
This covers a range of qualitative and quantitative techniques for evaluating scientific data sets.

However, the characteristics of modern data sets demands methods that automate data quality
assessment and may make many of the assessment techniques proposed by Bergdahl et al. unfea-
sible [174]. Modern data sets can be: petabytes of data in size; complex to curate, either because
individual data items have many or varying attributes, or due to intra-dependencies between items;
evolutionary rather than static, as new data items are added and further data cleaning activities
are undertaken; and heterogeneous because the individual data items in one data set may origi-
nate from several different sources. Stonebraker et al. [174] presented a data curation system, Data
Tamer that employs machine learning techniques to partially automate this ongoing assimilation
of data.

Climate science presents an example of this challenge. Edwards [50] observes that the pro-
duction of a relatively simple data set (global gridded temperature records, for example) requires
the ongoing acquisition, cleaning and assimilation of data sets from a range of providers, each of
whom may employ a variety of data gathering techniques. This data set may then need to be in-
tegrated again with other data sets of other observations, such as atmospheric pressure, by other
researchers. All these activities imply considerable complexity for users of the data sets and require
a considerable amount of supporting information infrastructure.

Bernholdt et al. [14], Mattmann et al. [111], and Crichton et al. [38] describe the challenges
encountered in building a large-scale science data management, distribution, and exchange system
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for NASA’s climate science programmes. These include in particular the heterogeneous nature
of the different management data sets and accompanying meta-data and the need to maintain
autonomy for local data producers/owners. Large-scale software applications, such as the Earth
System Grid [14] and the Climate Data Exchange have been developed Crichton et al. [38] to
ease the management and manipulation of this data. One consequence is that new, often larger
virtual data sets are continuously generated, and may also require careful management to support
reproducibility.

This view of data curation mirrors modern approaches to software development, in which a soft-
ware artefact is “cultivated” rather than “produced.” The notion of cultivation implies an ongoing
evolution of a software artefact (or data set) that incorporates gradual improvements over time as
opposed to the periodic releases of end products. An implication of this changing view is that the
conception of the scientific method may need to be reconsidered to manage this new complexity.

7 CONCLUSIONS

The challenges for scientific research that is now dependent on software are undoubtedly not new.
Rouson et al. [149] cites a Presidential (United States) advisory committee report from 1999, warn-
ing that software engineering practices were not being applied effectively to scientific computing.
Quirk [141] recalled discussions at a workshop in 1994 that covered many of the same challenges
concerning errors in scientific codes. Naylor and Finger [121] discussed the challenges of verifying
computer simulation models in the late 1960s. This longevity suggests that there are no straight
forward solutions to the challenges posed. In addition, the themes identified in the literature sug-
gest that the practice of both software engineering and scientific research need to be adapted to
address the challenge of repeatable, reproducible and falsifiable software-based science.

Many of the practices and tools that have been developed to alleviate the software crisis in other
domains of software engineering have been successfully employed (sometimes with adaptation)
in scientific programming projects. Further work is required to tailor these tools and practices
to support the specific needs of scientific programming, as well as support the transfer of best
practices into the domain. In addition, there is a need for software engineers to identify gaps in
software engineering practice that leave the requirements of scientific programming practitioners
unaddressed. Deshpande’s work on software-development models designed for micro-teams are
an example of advances in this direction [45].

However, many other challenges remain. For example, subtle variations in implementation, soft-
ware frameworks, compiler configuration, and hardware platform (among others) can all cause
small variations to outputs. In most cases, these variations in reproduced results are trivial and
are informally accepted as confirmation of a hypothesis. In some cases, these variations, when due
to predictable causes, such as floating point rounding, can also be assessed through uncertainty
quantification. However, there is a risk in this approach that the level of precision required is set to
match that perceived to be achievable, without due consideration for the relevant science. Better
procedures, standards, and associated tools are required to document and validate the rounding
tolerances for a computational result. A researcher should be able to assert the precision within
which they believe an independently reproduced result would support their findings, so this ex-
pected precision is both explicit and contestable.

Another unaddressed challenge is that the use of software engineering tools and methods
(higher-level programming languages, for example) intended to enhance software quality and ease
maintenance may increase the difficulty of verifying the correctness of scientific codes. Higher-
level programming languages require a greater number of transformations before they can be ex-
ecuted on the “bare metal” of a physical computer, increasing the opportunity for inconsistencies
between what the developer intended and what actually happens at runtime. Thompson [176]
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famously showed the ease with which a compiler can introduce additional functionality that does
not appear in a program’s source code. Similarly, Daniel et al. [39] demonstrated that the appli-
cation of automated refactoring tools can introduce bugs into software, if the refactoring tools
(software systems themselves) also contain bugs. The trend towards interpreted and/or domain-
specific languages in scientific programming, such as Python and MATLAB accompanied by more
sophisticated development environments, for all that it enhances software quality and readability,
may exacerbate this problem.

Similarly, the growing interest in the use of virtual machines for packaging computational ex-
periments [60, 181] may inadvertently introduce challenges to experimental comprehension and
generalisation. Virtual machine specifications necessarily incorporate a large number of depen-
dencies that either could or should be incidental to the experimental design. Consider, for exam-
ple, an experiment implemented purely in the Python programming language and packaged in a
virtual machine specification. The specification must list all dependencies needed to generate a
virtual machine, including, for example, an operating system type and release, Python runtime in-
terpreter release and associated libraries. Many of these choices should be incidental to the results
of the experiment, whilst a subset will be justifiably essential dependent variables in the experi-
mental design. Consequently, packaging an experiment within a virtual machine specification can
ease repeatability, but may also make reproduction of the experiment more difficult, since depen-
dencies that are critical to the result and those that are incidental are not distinguished [103].

The challenges posed by the use of software in scientific research may mean there needs to be
a re-consideration of how scientific research is practised in this context. As has been described,
software is fundamentally complex and volatile in nature, and this conflicts with the demands
of science for repeatable experimental designs that are sufficiently stable to be submitted to a
review and reporting process that may last many months or years. By the time a research article
has been published the associated software may have undergone numerous alterations as further
enhancements are made and, more critically, defects uncovered and remedied.

Several authors have argued for research articles to be augmented with experimental artefacts,
as reviewed in Section 5.4. Several conferences and workshops have experimented with the forma-
tion of Artefact Evaluation Committees to undertake peer reviews of codes and data sets submitted
alongside manuscripts [17]; and Castelli et al. [30] have reported on the growing development of
scientific communication infrastructures for linking articles and datasets. However, the challenges
identified in this article suggest these approaches do not go far enough because they do not address
the fundamental risk of disconnection between published research results and the experimental
artefacts that generated them. Executable artefacts in a peer reviewed research article may be just
as outdated as the textual content itself, relative to the current state of an experimental package, as
new features are added and defects discovered and repaired. There is a need to develop dissemina-
tion mechanisms that more definitively link published scientific reports with continually evolving
experimental artefacts.

Fortunately, the gap between software engineering and scientific programming may not be so
vast as implied by Kelly [95]. As Killcoyne and Boyle [99] notes, scientific research is often com-
plex and chaotic, with the “process of testing and refining (or discarding) hypotheses lead[ing]
to a multitude of elaborate experiments each of which differs, using a unique mix of techniques,
technologies, and analyses.” Software engineering in other domains can experience a similarly
chaotic combination of complex technologies that are continually adapted and re-configured to
meet changing needs. A range of techniques have been developed to manage and mitigate the risks
that arise in this context. Agile methods such as Scrum and XP have seen widespread adoption in
many domains, and several researchers (as described in this article) have adapted and applied them
successfully to scientific programming.

ACM Computing Surveys, Vol. 50, No. 4, Article 47. Publication date: August 2017.



www.manaraa.com

47:24 T. Storer

Ahalt et al. [2] have outlined a re-conceptualisation of the scientific process based on agile
software engineering principles that may address many of these challenges. The authors ar-
gue that the increasing complexity of experimental design, coupled with the dependence on
software makes the pre-experimental construction of precise hypotheses impractical. Rather, they
propose that experimentation should be conducted over short periods of time (cf sprints), based on
initial, approximate hypotheses. In addition, the focus of research output from the sprints is shifted
from experimental results and conclusions in the form of published articles to the experimental
package itself, which should be publicly accessible as soon as practical. As a consequence, the ex-
periment becomes “share-able” within the community of researchers for inspection, improvement
and adaptation. Bechhofer et al. [11] also supports this approach, but argues that these packages
of data and code, or research objects, require much more careful management and documentation
to make the extent of their trustworthiness explicit. Falessi and Shull [52] described related ideas
for enhancing the automation of software-based science to support reproducibility.

The feasibility of this approach is only just beginning to be explored, with many issues still unad-
dressed. For example, in 2014, the participants in the Experimental Methodology in Computational
Science Research Summer School published a report of their efforts to reproduce a collection of
computational experiments, all provided by the participants themselves [6]. The report itself was
intended to be open and reproducible, with all experimental code and the report text published on
GitHub for inspection and future improvement. Unfortunately, at the time of writing, the article
repository has not been modified since the Summer School and the report itself remains largely
incomplete, with many of the reproduction attempts abandoned. This experience illustrates that
although dissemination of computational experiments is an important and useful development,
further work is needed to reduce the friction encountered when reproducing and evaluating com-
putational experiments and enhance the peer-review process.

The 2009 Roundtable on Data and Code Sharing made a number of recommendations in this
regard, including the incorporation of code into the peer review process and the development of
integrated communities around repositories of code used in scientific programming [193]. Partici-
pants in a workshop on Reproducible Research also noted that new review mechanisms may need
to be developed for scientific code [104]. In particular, there is a need to distinguish between small,
experiment-specific codes and the wider reusable software infrastructure they may depend on.

Software is, of course, not a uniquely fault-prone instrument for scientific research. Normal
scientific practice is concerned with gradually establishing confidence in newly published results
through repetition and reproduction of experiments. This allows for the discovery and correction
of defects in instruments and methods that can just as often strengthen the original result. The
key challenge identified in this review is to adjust the tempo of this confidence-building process
to match the rate of evolution of scientific software instruments and provide explicit mechanisms
to monitor the quality of software and associated scientific data as it evolves over time.
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